Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(9): 1306-1322, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38344759

RESUMEN

Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Técnicas Electroquímicas/métodos , Inocuidad de los Alimentos , Colorimetría
2.
Crit Rev Anal Chem ; : 1-18, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917532

RESUMEN

Sensitive and rapid determination of foodborne pathogenic bacteria is of practical importance for the control and prevention of foodborne illnesses. Nowadays, with the prosperous development of fluorescence assays, fluorescence resonance energy transfer (FRET)-derived diagnostic strategies are extensively employed in quantitative analysis of different pathogenic bacteria in food-related matrices, which displays a rapid, simple, stable, reliable, cost-effective, selective, sensitive, and real-time way. Considering the extensive efforts that have been made in this field so far, we here discuss the up-to-date developments of FRET-based diagnostic approaches for the determination of key foodborne pathogens like Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Salmonella spp., Campylobacter spp., and Bacillus cereus in complex food-related matrices. Moreover, the principle of this technology, the choosing standards of acceptor-donor pairs, and the fluorescence properties are also profiled. Finally, the current prospects and challenges in this field are also put forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...